Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Medicine (Baltimore) ; 100(34): e26933, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-2191058

ABSTRACT

ABSTRACT: It is presently unknown whether imported cases of the 2019 coronavirus disease (COVID-19) have different characteristics when compared with local cases. To compare the clinical characteristics of local cases of COVID-19 in China compared with those imported from abroad.This was a retrospective study of confirmed cases of COVID-19 admitted at the Beijing Ditan Fever Emergency Department between February 29th, 2020, and March 27th, 2020. The clinical characteristics of the patients were compared between local and imported cases.Compared with local cases, the imported cases were younger (27.3 ±â€Š11.7 vs. 43.6 ±â€Š22.2 years, P < .001), had a shorter interval from disease onset to admission (1.0 (0.0-2.0) vs 4.0 (2.0-7.0) days, P < .001), lower frequencies of case contact (17.4% vs 94.1%, P < .001), fever (39.1% vs 82.4%, P < .001), cough (33.3% vs 51.0%, P = .03), dyspnea (1.9% vs 11.8%, P = .01), fatigue (7.5% vs. 27.5%, P = 0.001), muscle ache (4.7% vs. 25.5%, P < 0.001), and comorbidities (P < .05). The imported cases were less severe than the local cases, with 40.4% versus 5.9% mild cases, 2.8% versus 15.7% severe cases, and no critical cases (P < .001). The length of hospital stay was longer in imported cases than in local cases (32.3 ±â€Š14.5 vs 21.7 ±â€Š11.2 days, P < .001). The imported cases showed smaller biochemical perturbations than the local cases. More imported cases had no sign of pneumonia at computed tomography (45.0% vs 14.9%, P = .001), and none had pleural effusion (0% vs 14.9%, P < .001).Compared with local cases, the imported cases of COVID-19 presented with milder disease and less extensive symptoms and signs.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , Adult , Age Factors , Aged , COVID-19/complications , China/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Time-to-Treatment
2.
Comput Math Methods Med ; 2022: 9914927, 2022.
Article in English | MEDLINE | ID: covidwho-2020562

ABSTRACT

Introduction: Novel coronavirus pneumonia (COVID-19) is an acute respiratory disease caused by the novel coronavirus SARS-CoV-2. Severe and critical illness, especially secondary bacterial infection (SBI) cases, accounts for the vast majority of COVID-19-related deaths. However, the relevant biological indicators of COVID-19 and SBI are still unclear, which significantly limits the timely diagnosis and treatment. Methods: The differentially expressed genes (DEGs) between severe COVID-19 patients with SBI and without SBI were screened through the analysis of GSE168017 and GSE168018 datasets. By performing Gene Ontology (GO) enrichment analysis for significant DEGs, significant biological processes, cellular components, and molecular functions were selected. To understand the high-level functions and utilities of the biological system, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed. By analyzing protein-protein interaction (PPI) and key subnetworks, the core DEGs were found. Results: 85 DEGs were upregulated, and 436 DEGs were downregulated. The CD14 expression was significantly increased in the SBI group of severe COVID-19 patients (P < 0.01). The area under the curve (AUC) of CD14 in the SBI group in severe COVID-19 patients was 0.9429. The presepsin expression was significantly higher in moderate to severe COVID-19 patients (P < 0.05). Presepsin has a diagnostic value for moderate to severe COVID-19 with the AUC of 0.9732. The presepsin expression of COVID-19 patients in the nonsurvivors was significantly higher than that in the survivors (P < 0.05). Conclusion: Presepsin predicts severity and SBI in COVID-19 and may be associated with prognosis in COVID-19.


Subject(s)
Bacterial Infections , COVID-19 , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lipopolysaccharide Receptors/genetics , Peptide Fragments/genetics , SARS-CoV-2 , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL